

SAINT IGNATIUS' COLLEGE

Trial Higher School Certificate

2002

MATHEMATICS

EXTENSION 1

2:00am – 4:05 pm Friday 30th August 2002

General Instructions

- Reading time: 5 minutes
- · Working time: 2 hours
- · Write using blue or black pen
- Write your name and teacher's name on each unswer booklet
- · Board approved calculators may be used
- A table of standard integrals is provided

- Total Marks (84)
- Attempt Questions 1 7
- · All questions are of equal value

Students are reminded that this is a trial examination only and cannot in any way guarantee the content or the format of the 2002 Mathematics Extension 1 Higher School Certificate examination

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx \qquad \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0

Total marks (84)
Attempt Questions 1 – 7
All questions are of equal value

Answer each question in a SEPARATE writing booklet.

QUESTION 1 (12 marks) Use a SEPARATE writing booklet.

Marks

(a) Factorise $64 - y^3$.

1

(b) Find the coordinates of the point that divides the join of A(1, -3) and B(-5, 7) externally in the ratio 5:2.

2

(c) Solve $\frac{2x}{x-2} > 1$.

3

(d) Find the acute angle, to the nearest degree, between the lines 3x - y + 2 = 0 and x + 2y - 5 = 0.

3

(e) Using the expansion of $\cos(A+B)$, find the exact value of $\cos 75^{\circ}$ in surd form with a rational denominator.

QUESTION 2 (12 marks) Use a SEPARATE writing booklet.

Marks

(a) Find the general solution of the equation $\sin^2 x - 2\cos x + 2 = 0$, where x is 3 in radians.

(b) Find $\int \cos^2 2x \, dx$.

2

- (c) Use the substitution $x = u^2 1$ for u > 0, to evaluate $\int_{3}^{8} \frac{x-1}{\sqrt{x+1}} dx$.
- (d) The probability that a student will attend university after doing the HSC 3 is 0.7. In a class of 25 students, what is the probability that at least 23 students will proceed to university after the HSC?

QUESTION 3 (12 marks) Use a SEPARATE writing booklet.

Marks

(a) Find the indefinite integral $\int \frac{dx}{9+16x^2}$.

2

- (b) Consider the function $f(x) = \cos^{-1}(x+2) \frac{\pi}{2}$.
 - (i) What is the domain of y = f(x)?

1

(ii) Sketch the graph of y = f(x).

2

- (c) Consider the function $f(x) = \tan^{-1} x + \tan^{-1} \frac{1}{x}$.
 - (i) Prove the derivative of f(x) is zero.

2

(ii) What is the domain of y = f(x)?

2

1

(d) The velocity ν of a particle moving in a straight line at position x is given by:

Find the value of f(x) over the domain of y = f(x).

v = 1 + 2x.

Find the acceleration of the particle at position x.

QUESTION 4 (12 marks) Use a SEPARATE writing booklet.

Marks

- (a) Consider the letters of the word MILLER.
 - (i) How many arrangements of these letters are possible if the letters 1 are arranged in a straight line?
 - (ii) What is the probability that the L's will be separated when the letters are arranged in a straight line?
 - (iii) If the letters are arranged in a circle, how many arrangements are 1 possible?
 - (iv) If the letters are arranged in a circle, what is the probability the L's will be opposite each other?
- (b) Find the term independent of x in the expansion of $\left(x \frac{2}{x^2}\right)^9$, expressing 3 your answer as an integer.
- (c) Prove that $\binom{n+1}{2} + \binom{n+2}{2}$ is the square of an integer. 3

QUESTION 6 (12 marks) Use a SEPARATE writing booklet.

Marks

1

(a)

AB is a common tangent to the circles, which touch at C. CT is the tangent at C. A line through C meets the circles at D and E. $\angle ADC = 28^{\circ}$.

Find the size of $\angle ACB$, giving reasons.

(b)

A normal is drawn to the parabola $x^2 = 4ay$ at a variable point $P(2at, at^2)$ on the parabola. The normal meets the y axis at N. M is the midpoint of PN. The coordinates of M are $(at, at^2 + a)$ and O is the origin.

- (i) Show that the equation of the locus of M is the parabola $ay = x^2 + a^2$.
- (ii) What is the vertex of the parabola $ay = x^2 + a^2$?
- (iii) What is the domain of this locus? Explain.
- The rate of change of the amount of pollutant (x units) in a lake after t days of rain is given by: $\frac{dx}{dt} = \frac{1}{4} \frac{x}{16}$.
 - (i) Show that $x = 4 + Ae^{-\frac{t}{16}}$ satisfies this equation.
 - (ii) If the initial amount of pollutant is 20 units, find the value of A.
 - (iii) In how many days will the amount of the pollutant drop to 8 units? 2

QUESTION 5 (12 marks) Use a SEPARATE writing booklet.

Marks

- (a) Two of the roots of the equation $x^3 + 6x^2 x + k = 0$ are 2, -3, where k is a constant.
 - (i) By considering the sum of the roots of this equation, find the third 2 root.
 - (ii) Hence or otherwise find the value of the constant k.
- (b) Use one step of Newton's method to find an approximation to the root of the equation $x^4 10x + 7 = 0$ near x = 2.
- (c) A particle moves in Simple Harmonic Motion about an origin O. The period of motion is 4 seconds and the amplitude is 6 cm.
 - (i) Write down an expression for x in terms of t, when the particle is x = 2 cm from O, t seconds after passing through O.
 - ii) Find its speed as it passes through O.
 - (iii) What is the maximum acceleration of the particle?

QUESTION 7 (12 marks) Use a SEPARATE writing booklet.

Marks

(a) Prove by mathematical induction, where n is a positive integer and $n \ge 2$, 5 that $\left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \left(1 - \frac{1}{4^2}\right) \dots \left(1 - \frac{1}{n^2}\right) = \frac{n+1}{2n}$.

(b)

At a certain instant, a plane flies overhead at a constant altitude of 5000 metres, at a constant speed of 100 metres per second. When the plane has travelled x metres from the overhead position, its angle of elevation from the observer is θ radians.

- (i) Show that $\frac{dx}{d\theta} = -\frac{5000}{\sin^2 \theta}$.
- (ii) Hence show that $\frac{d\theta}{dt} = -\frac{1}{50}\sin^2\theta$.
- (iii) Find the rate at which the angle of elevation is changing:
 - (α) when the plane is overhead.
 - (β) 50 seconds after the plane is overhead.

End of Examination

SAINT IGNATIUS' COLLEGE

Trial Higher School Certificate

2002

MATHEMATICS

EXTENSION 1

Suggested Solutions

Mathematics Extension 1: Question 1		
Suggested Solutions	Marks Awarded	Marker's Comments
(a) $64 - y^3 = (4 - y)(16 + 4y + y^2)$		
(b) $A(1,-3)$ $B(-5,7)$ $5:-2$ $\left(\frac{5\times(-5)+(-2)\times i}{5+(-2)},\frac{5\times 7+(-2)\times(-3)}{5+(-2)}\right)$,
$(-9, 13\frac{2}{3})$		
$(c) \qquad \frac{2x}{x-2} > 1$		
$2x(x-2) > (x-2)^{2}$ $2x^{2}-4x > x^{2}-4x+4$ $x^{2} > 4$		
x < -2, x > 2 ③	The Property of the Property o	·
(d) $3x - y + 2 = 0$; $m = 3$ $x + 2y - 5 = 0$; $m = -\frac{1}{2}$ $tan \theta = \left \frac{3 - (-\frac{1}{2})}{1 + 3 \times (-\frac{1}{2})} \right $ = 7 $\theta = 82^{\circ}$ (nearest degree) (3)		
(e) cos(A+B) = cosAcosB - sinAsinB		
$\cos 75^{\circ} = \cos(45^{\circ} + 30^{\circ})$ $= \cos 45^{\circ} \cos 30^{\circ} - \sin 45^{\circ} \sin 30^{\circ}$ $= \sqrt{2} \times \sqrt{3} - \sqrt{2} \times \frac{1}{2}$ $= \frac{\sqrt{3} - 1}{2\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$ $= \frac{\sqrt{6} - \sqrt{2}}{4}$		

Mathematics Extension 1: Question 2		
Suggested Solutions	Marks Awarded	Marker's Comments
(a) $\sin^2 x - 2\cos x + 2 = 0$		
1-cos2x-2cosx+2=0		
$\cos^2 x + 2\cos x - 3 = 0$		
$(\cos x + 3)(\cos x - 1) = 0$		
$\cos x = -3$: no solution		
$\cos x = 1$: $x = 2n\pi$		
where n is an integer.		
(b) $\int \cos^2 2 \times dx = \int_{\frac{\pi}{2}}^{1} (1 + \cos 4x) dx$		
$= \frac{1}{2} \left(x + \frac{1}{4} \sin 4x \right) + C $ 2		
(c) $\int_{2}^{8} \frac{x-1}{\sqrt{x+1}} dx$ $x = u^{2} - 1$		
3 / 32 11 0032 = 202 0002		
$= \int_{2}^{3} \frac{u^{2} - \lambda}{u} \times 2u du \qquad \qquad x = 3 \Rightarrow u = 2$ $3u = 8 \Rightarrow u = 3$		Verse
-2		
$= \int_{2}^{3} (2u^{2} - 4) du$		
$= \left[\frac{2}{3} u^3 - 4 u \right]_z$		
$= (18-12) - (5\frac{1}{3}-8)$		
= 8 \frac{2}{3}		
(4)		•
(d) P(at least 23 students)		
= P(23) + P(24) + P(25)		
$= {25 \choose 23} (0.7)^{23} (0.3)^{2} + {25 \choose 24} (0.7)^{26} (0.3) + (0.7)^{25}$		
	į	
= 0.00 896		
(3)		•

Mathematics Extension 1: Question 3		
Suggested Solutions	Marks Awarded	Marker's Comments
$(a) \int \frac{d\alpha}{9 + 16 x^2} = \int \frac{d\alpha}{16 \left(\frac{9}{16} + x^2\right)}$		
$= \frac{1}{16} \times \frac{1}{\frac{3}{4}} + \tan^{-1} \frac{30}{\frac{3}{4}} + C$		
$=\frac{1}{12} \tan^{-1} \frac{4x}{3} + C$		
OR Use substitution u = 4x.		
(b) $f(x) = \cos^{-1}(x+2) - 1$,	
(i) Domain: -1 ≤ x + z ≤ /	÷	
1.23 = 2.		
-3 -2 -1 × ×	;	·•
$\begin{array}{c c} -3 & -2 & -1 \\ & & -\frac{\pi}{2} \end{array}$	· ·	
(c) $f(x) = \tan^{-1}x + \tan^{-1}\frac{1}{x}$		•
(i) $f'(x) = \frac{1}{1+x^2} + \frac{1}{1+\left(\frac{1}{x}\right)^2} \times \left(\frac{1}{x^2}\right)$		
$=\frac{1}{1+x^2}-\frac{1}{2x^2+1}$		
= 0 (2)		
(11) Domain: all x, except x=0		
(iii) For $x > 0$: $f(1) = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$ For $x < 0$: $f(-1) = -\frac{\pi}{4} + (-\frac{\pi}{4}) = -\frac{\pi}{2}$.		
$\therefore f(x) = \frac{\pi}{2} \text{ for } x > 0; f(x) = -\frac{\pi}{2} \text{ for } x < 0.$		
$(d) \qquad v = 1 + 2x$		-
$\alpha = \frac{d}{dsc} \left(\frac{1}{2} v^2 \right)$ $= \frac{d}{dsc} \frac{1}{2} \left(1 + 20c \right)^2$		
$= \pm \times 2 \left(1 + 2x\right) \times 2$		
= 2(1+2x).	į	
(,	
	<u>i</u>	

Mathematics Extension 1: Question 4		10	
Suggested Solutions		Marks Awarded	Marker's Comments
(a) MILLER.			
(i) No. of arrange's = $\frac{6!}{2!}$ = 360	()		
(ii) Prob (L's separated) = 1 - P(L's together)			
$= 1 - \frac{5!}{360}$ $= \frac{2}{3}$	(2)		
, , , , , , , , , , , , , , , , , , ,	_		
(iii) No. of arrange's = $\frac{5!}{2!}$ = 60	1		
(iv) $P(L's \text{ opposite}) = \frac{1}{s!}$ or $\frac{4!}{5!} = \frac{1}{5}$	2		
$(b) \left(x - \frac{2}{x^2}\right)^9$.			non-
			•
Term indep. of $x = {9 \choose 3} x^6 \left(-\frac{2}{x^2}\right)^3$			<u>.</u>
(by inspection) = $504 \times (-8) \times x^{\circ}$			
= -672			
$ \frac{\partial R}{\partial r} = \begin{pmatrix} q \\ r \end{pmatrix} \times \begin{pmatrix} q - r \\ \frac{1}{2} x \end{pmatrix}^{r} $ $ = \begin{pmatrix} q \\ r \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix}^{r} \times \begin{pmatrix} q -3 r \\ \frac{1}{2} x \end{pmatrix}^{r} $	(3)		
$ (c) {n+1 \choose 2} + {n+2 \choose 2} = \frac{(n+1) n}{2} + \frac{(n+2)(n+1)}{2} $			
$= \frac{n+l}{2} \left[n+n+2 \right]$			
$= \frac{n+1}{2} \times 2(n+1)$			
$= (\alpha + 1)^2$			
which is the square of an integ	er.		
	3		

-

٠,

Mathematics Extension 1: Question	5 .	· · · · · · · · · · · · · · · · · · ·	
Suggested Solutions		Marks Awarded	Marker's Comments
(a) $x^3 + 6x^2 - x + k = 0$			
(i) Let the third root be 2:	į		
2 + (-3) + \(= -6			
d = -5	2		
(ii) By product of roots:			
2 x(-3) x(-5) = -k			
k = -30	2		
(b) $f(x) = x^4 - 10x + 7$			
$f'(x) = 4x^3 - 10$			
$x_1 = 2 - \frac{f(2)}{f'(2)}$			
$= 2 - \frac{3}{22}$			
= 1.86 (2 d.P)			
	3		•
c) Period = 4 sec, Amplitude =	6cm.		
(i) $T = \frac{2\pi}{n} = 4$ $n = \frac{\pi}{2}$.		į	
$3c = 6 \sin \frac{\pi}{2} t$.	(2)	·	
(ii) $v = 6 \times \frac{\pi}{2} \cos \frac{\pi}{2} t$.			
When $t=0$, $v=3\pi$.			
Speed is 37 cm/s at 0.	(2)		
$(iii) \alpha = -3\pi \times \frac{\pi}{2} \sin \frac{\pi}{2} t$			
$\alpha = -3\pi \times \frac{\pi}{2} \sin \frac{\pi}{2} t$ $= -\frac{3\pi^2}{2} \sin \frac{\pi}{2} t$			
2 317 2 2			
Maximum acceleration is $\frac{3\pi^2}{2}$ er	n/sec2		
2			

Mathematics Extension 1: Question 6		
Suggested Solutions	Marks Awarded	Marker's Comments
[a] E Zeo D LTAC = 28° (alternate seg. theorem) LTCA = 28° (TA = TC: tangents from an external point are equal) LBTC = 56° (exterior angle of ATAC). But TB = TC (tangents from ext. point) LTCB = ± (180°-56°) (angle sum of) isos. ATBC)		
		-
(ii) $x^2 = a(y-a)$ Vertex is $(6,a)$. (iii) Domain - all x except x=0, because normal at $(6,0)$ does not cut the y-axis at one point - it is the y-axis		<i>A</i>
$\frac{dsc}{ct} = \frac{1}{4} - \frac{x}{76}.$ (1) $sc = 4 + Ae^{-\frac{t}{12}}$ $\frac{dx}{dt} = -\frac{1}{16}Ae^{-\frac{t}{12}} = -\frac{1}{16}(x-t) = \frac{1}{4} - \frac{x}{16}.$ (2) (ii) $t=0, x=20: 20 = 4 + Ae^{0}: A=16$		
iii) $x = 4 + 16 e^{-\frac{t}{16}}$ When $x = 8$, $8 = 4 + 16 e^{-\frac{t}{16}}$ $e^{-\frac{t}{16}} = \frac{1}{4}$, $e^{\frac{t}{16}} = 4$ $t = 16 \ln 4 = 22.18$ Approx 22 days.		

Suggested Solutions Marks Awarded (a) Prove $\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\cdots\left(1-\frac{1}{n^2}\right)=\frac{n+1}{2n}$ for $n \ge 2$. When $n=2$, $LHS=1-\frac{1}{2^2}=\frac{3}{4}$. $RHS=\frac{2+1}{2\times 2}=\frac{3}{4}$ \therefore it is true for $n=2$. Assume it is true for $n=k$: i.e. assume $\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\cdots\left(1-\frac{1}{k^2}\right)=\frac{k+1}{2k}$. When $n=k+1$, $LHS=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\cdots\left(1-\frac{1}{k^2}\right)\left(1-\frac{1}{(k^2)}\right)^2$ $=\frac{k+1}{2k}\left(1-\frac{1}{(k+1)^2}\right)$ by assumption $=\frac{k+1}{2k}\left(\frac{k+1}{k+1}\right)^2$ $=\frac{k^2+2k}{2k(k+1)}$ $=\frac{k^2+2k}{2k(k+1)}$ $=\frac{k+2}{2k(k+1)}$ $=\frac{k+2}{2k(k+1)}$ when $n=k+1$. i. if it is true for $n=k$, then it is true for $n=k+1$. Since it is true for $n=2$, it is true for $n=3$, $n=4$,	
(a) Prove $(1-\frac{1}{2^2})(1-\frac{1}{3^2})\cdots(1-\frac{1}{n^2}) = \frac{n+1}{2n}$ for $n \ge 2$. When $n = 2$, $LHS = 1-\frac{1}{2^2} = \frac{3}{2}$. $RHS = \frac{2+1}{2\times 2} = \frac{3}{4}$. $RHS = \frac{2+1}{2\times 2} = \frac{3}{4}$. $\therefore i + is \text{ true for } n = 2$. Assume it is true for $n = k$: $i \cdot e \cdot assume \left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\cdots\left(1-\frac{1}{k^2}\right) = \frac{k+1}{2k}$. When $n = k+1$, $LHS = \left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\cdots\left(1-\frac{1}{k^2}\right)\left(1-\frac{1}{(k+1)^2}\right) = \frac{k+1}{2k}\left(1-\frac{1}{(k+1)^2}\right)$ by assumption $= \frac{k+1}{2k}\left(1-\frac{1}{(k+1)^2}\right)$ by assumption $= \frac{k+1}{2k}\left(\frac{k+1}{(k+1)^2}\right) = \frac{k^2+2k}{2k(k+1)}$ $= \frac{k^2+2k}{2(k+1)}$ $= \frac{k+2}{2(k+1)}$ $= \frac{n+1}{2n}$ when $n = k+1$. $\therefore \text{ if it is true for } n = k$, then it is true for $n = k$, $\therefore \text{ ince it is true for } n = 2$,	farker's Comments
Prove $(1-\frac{1}{2^2})(1-\frac{1}{3^2})\cdots(1-\frac{1}{n^2}) = \frac{n+1}{2n}$ for $n \ge 2$. When $n = 2$, $LHS = 1-\frac{1}{2^2} = \frac{3}{4}$. $RHS = \frac{2+1}{2\times 2} = \frac{3}{4}$. it is true for $n = 2$. Assume it is true for $n = k$: i.e. assume $(1-\frac{1}{2^2})(1-\frac{1}{3^2})\cdots(1-\frac{1}{k^2}) = \frac{k+1}{2k}$. When $n = k+1$, $LHS = (1-\frac{1}{2^2})(1-\frac{1}{3^2})\cdots(1-\frac{1}{k^2})(1-\frac{1}{(k+1)^2}) = \frac{k+1}{2k}(1-\frac{1}{(k+1)^2})$ by assumption $= \frac{k+1}{2k}(1-\frac{1}{(k+1)^2})$ by assumption $= \frac{k+1}{2k} \times \frac{(k+1)^2-1}{(k+1)}$ $= \frac{k^2+2k}{2k(k+1)}$ $= \frac{k^2+2k}{2k(k+1)}$ $= \frac{k(k+2)}{2k(k+1)}$ $= \frac{k(k+2)}{2k(k+1)}$ $= \frac{k+1}{2n}$ when $n = k+1$. if it is true for $n = k$, then it is true for $n = k$. Since it is true for $n = 2$,	
$RHS = \frac{2+1}{2\times 2} = \frac{3}{4}$ it is true for $n = 2$. Assume it is true for $n = k$: i.e. assume $\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3^2}\right) \left(1 - \frac{1}{K^2}\right) = \frac{K+1}{2k}$. When $n = k+1$; $LHS = \left(1 - \frac{1}{2^k}\right)\left(1 - \frac{1}{3^2}\right) \left(1 - \frac{1}{K^2}\right)\left(1 - \frac{1}{(K+1)^2}\right)$ $= \frac{K+1}{2^k}\left(1 - \frac{1}{(K+1)^2}\right) \text{ by assumption}$ $= \frac{K+1}{2^k} \times \frac{(K+1)^2 - 1}{(K+1)^2}$ $= \frac{K^2 + 2k}{2^k(K+1)}$ $= \frac{K^2 + 2k}{2^k(K+1)}$ $= \frac{K+2}{2^k(K+1)}$ $= \frac{K+2}{2^k(K+1)}$ $= \frac{N+1}{2^n} \text{ when } n = k+1$ $\therefore \text{ if it is true for } n = k,$ then it is true for $n = k$, then it is true for $n = k+1$. Since it is true for $n = 2$,	
Assume it is true for $n=2$. Assume it is true for $n=k$: i.e. assume $(1-\frac{1}{2})(1-\frac{1}{3^2})(1-\frac{1}{k^2})=\frac{k+1}{2k}$. When $n=k+1$, LHS= $(1-\frac{1}{2k})(1-\frac{1}{3^2})(1-\frac{1}{k^2})(1-\frac{1}{(k+1)^2})$ = $\frac{k+1}{2k}(1-\frac{1}{(k+1)^2})$ by assumption = $\frac{k+1}{2k} \times \frac{(k+1)^2-1}{(k+1)^2}$ = $\frac{k^2+2k+1-1}{2k(k+1)}$ = $\frac{k(k+2)}{2k(k+1)}$ = $\frac{k+2}{2(k+1)}$ when $n=k+1$. If it is true for $n=k$, then it is true for $n=k$, then it is true for $n=k+1$. Since it is true for $n=2$,	
Assume it is true for $n=k$: i.e. assume $(1-\frac{1}{2^2})(1-\frac{1}{3^2})(1-\frac{1}{k^2})=\frac{k+1}{2k}$. When $n=k+1$, LHS= $(1-\frac{1}{2^k})(1-\frac{1}{3^2})(1-\frac{1}{k^2})(1-\frac{1}{(k+1)^2})$ = $\frac{k+1}{2^k}(1-\frac{1}{(k+1)^2})$ by assumption = $\frac{k+1}{2^k}\times\frac{(k+1)^2-1}{(k+1)^2}$ = $\frac{k^2+2k}{2^k(k+1)}$ = $\frac{k^2+2k}{2^k(k+1)}$ = $\frac{k+2}{2^k(k+1)}$ = $\frac{n+1}{2^k}$ when $n=k+1$. If it is true for $n=k$, then it is true for $n=k$, then it is true for $n=k+1$.	
i.e. assume $(1-\frac{1}{2^{2}})(1-\frac{1}{3^{2}})(1-\frac{1}{k^{2}}) = \frac{k+1}{2k}$. When $n = k+1$, LHS= $(1-\frac{1}{2^{k}})(1-\frac{1}{3^{2}})(1-\frac{1}{k^{2}})(1-\frac{1}{(k+1)^{2}})$ = $\frac{k+1}{2^{k}}(1-\frac{1}{(k+1)^{2}})$ by assumption = $\frac{k+1}{2^{k}} \times \frac{(k+1)^{2}-1}{(k+1)^{2}}$ = $\frac{k^{2}+2k+1-1}{2^{k}(k+1)}$ = $\frac{k^{2}+2k}{2^{k}(k+1)}$ = $\frac{k(k+2)}{2^{k}(k+1)}$ = $\frac{k+2}{2^{k}(k+1)}$ = $\frac{n+1}{2^{k}}$ when $n = k+1$. If it is true for $n = k$, then it is true for $n = k+1$. Since it is true for $n = 2$,	
When $n = k+1$, $LHS = (1 - \frac{1}{a^{2}})(1 - \frac{1}{3^{2}}) \cdots (1 - \frac{1}{k^{2}})(1 - \frac{1}{(k+1)^{2}})$ $= \frac{k+1}{2k}(1 - \frac{1}{(k+1)^{2}})$ by assumption $= \frac{k+1}{2k} \times \frac{(k+1)^{2} - 1}{(k+1)^{2}}$ $= \frac{k^{2} + 2k + 1 - 1}{2k(k+1)}$ $= \frac{k^{2} + 2k}{2k(k+1)}$ $= \frac{k(k+2)}{2k(k+1)}$ $= \frac{k+2}{2(k+1)}$ $= \frac{n+1}{an}$ when $n = k+1$. If it is true for $n = k$, then it is true for $n = k+1$. Since it is true for $n = 2$,	
$LHS = (1 - \frac{1}{2k})(1 - \frac{1}{3^{2}}) \cdots (1 - \frac{1}{k^{2}})(1 - \frac{1}{(k+1)^{2}})$ $= \frac{k+1}{2k}(1 - \frac{1}{(k+1)^{2}}) \text{ by assumption}$ $= \frac{k+1}{2k} \times \frac{(k+1)^{2} - 1}{(k+1)^{2}}$ $= \frac{k^{2} + 2k + 1 - 1}{2k(k+1)}$ $= \frac{k^{2} + 2k}{2k(k+1)}$ $= \frac{k(k+2)}{2k(k+1)}$ $= \frac{k(k+2)}{2(k+1)}$ $= \frac{k+2}{2(k+1)} \text{ when } n = k+1.$ $\therefore \text{ if it is true for } n = k,$ then it is true for $n = k$, then it is true for $n = k$, $\text{Since it is true for } n = 2,$	
$= \frac{k+1}{2k} \left(1 - \frac{1}{(k+1)^2} \right) \text{ by assumption}$ $= \frac{k+1}{2k} \times \frac{(k+1)^2 - 1}{(k+1)^2}$ $= \frac{k^2 + 2k + 1 - 1}{2k (k+1)}$ $= \frac{k^2 + 2k}{2k (k+1)}$ $= \frac{k(k+2)}{2k (k+1)}$ $= \frac{k+2}{2(k+1)}$ $= \frac{n+1}{2n} \text{ when } n = k+1.$ $\therefore \text{ if it is true for } n = k,$ then it is true for $n = k$, $\text{Since it is true for } n = 2,$	•
$= \frac{k+1}{2k} \times \frac{(k+1)^2 - 1}{(k+1)^2}$ $= \frac{k^2 + 2k + 1 - 1}{2k(k+1)}$ $= \frac{k^2 + 2k}{2k(k+1)}$ $= \frac{k(k+2)}{2k(k+1)}$ $= \frac{k+2}{2(k+1)}$ $= \frac{n+1}{2n} \text{when } n = k+1.$ $\therefore \text{ if it is true for } n = k,$ then it is true for $n = k+1$. Since it is true for $n = 2$,	
$= \frac{k^{2} + 2k + 1 - l}{2k (k+1)}$ $= \frac{k^{2} + 2k}{2k(k+1)}$ $= \frac{k(k+2)}{2k (k+1)}$ $= \frac{k+2}{2(k+1)}$ $= \frac{n+1}{2n} \text{when } n=k+1.$ $\therefore \text{ if it is true for } n=k,$ then it is true for $n=k+1$. Since it is true for $n=2$,	
$= \frac{k^2 + 2k}{2k(k+1)}$ $= \frac{k(k+2)}{2k(k+1)}$ $= \frac{k+2}{2(k+1)}$ $= \frac{n+1}{2n} \text{when } n=k+1.$ $\therefore \text{ if it is true for } n=k,$ then it is true for $n=k+1$. Since it is true for $n=2$,	
$= \frac{k^2 + 2k}{2k(k+1)}$ $= \frac{k(k+2)}{2k(k+1)}$ $= \frac{k+2}{2(k+1)}$ $= \frac{n+1}{2n} \text{when } n=k+1.$ $\therefore \text{ if it is true for } n=k,$ then it is true for $n=k+1$. Since it is true for $n=2$,	
$= \frac{k(k+2)}{2k(k+1)}$ $= \frac{k+2}{2(k+1)}$ $= \frac{n+1}{2n} \text{when } n=k+1.$ $\therefore \text{ if it is true for } n=k,$ then it is true for $n=k+1$. Since it is true for $n=2$,	
$= \frac{k+2}{2(k+1)}$ $= \frac{n+1}{2n} \text{when } n=k+1.$ $\therefore \text{ if it is true for } n=k,$ then it is true for $n=k+1$. Since it is true for $n=2$,	
= $\frac{n+1}{2n}$ when $n=k+1$. if it is true for $n=k$, then it is true for $n=k+1$. Since it is true for $n=2$,	
i. if it is true for n=k, then it is true for n=k+1. Since it is true for n=2,	
i. if it is true for n=k, then it is true for n=k+1. Since it is true for n=2,	
Since it is true for n=2,	
· · · · · · · · · · · · · · · · · · ·	
it is true for n=3. n=4	
,	•
i.e. it is true for all positive .	
integers n > 2	

-1

Mathematics Extension 1: Question 7(b)		
Suggested Solutions	Marks Awarded	Marker's Comments
(b) x m → 100 m/s		
(i) $\frac{x}{5000} = \tan(90^{\circ}-\theta)$ $x = 5000 \cot \theta$ $\frac{dx}{d\theta} = -5000 \csc^{2}\theta$ $\frac{d\theta}{\sin^{2}\theta} = \frac{5000}{\sin^{2}\theta}$ (2)		
(ii) $\frac{dx}{dt} = \frac{ds}{d\theta} \times \frac{d\theta}{dt}$		
$\frac{d\theta}{dt} = -\frac{5000}{\sin^2 \theta} \times \frac{d\theta}{dt}$ $\frac{d\theta}{dt} = -\frac{100\sin^2 \theta}{5000}$ $= -\frac{1}{50}\sin^2 \theta$ (2)		- - -
iii) (x) When overhead, O=90°,		- ·
$\frac{d\theta}{dt} = -\frac{1}{50} \sin^2 90^{\circ}$ $= -\frac{1}{50}$ Angle is changing at $\frac{1}{50}$ rad/sec.		,
(B) When $t = 50$, $x = 100 \times 50$ = 5000 $Q = \frac{\pi}{4}$. $\frac{d0}{dt} = -\frac{1}{50} \sin^2(\frac{\pi}{4})$ = $-\frac{1}{100}$		
Angle is changing at 1 rad/sec. 2		٠.